68 research outputs found

    Diffractive optics approach towards subwavelength pixels

    Full text link
    Pixel size in cameras and other refractive imaging devices is typically limited by the free-space diffraction. However, a vast majority of semiconductor-based detectors are based on materials with substantially high refractive index. We demonstrate that diffractive optics can be used to take advantage of this high refractive index to reduce effective pixel size of the sensors below free-space diffraction limit. At the same time, diffractive systems encode both amplitude and phase information about the incoming beam into multiple pixels, offering the platform for noise-tolerant imaging with dynamical refocusing. We explore the opportunities opened by high index diffractive optics to reduce sensor size and increase signal-to-noise ratio of imaging structures.Comment: submitted to SPIE-DCS 201

    Nonlocal Optics of Plasmonic Nanowire Metamaterials

    Full text link
    We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal electromagnetic modes supported by the composite and derive the nonlocal effective medium approximation for this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell's equations and discuss generalization of the developed formalism to other uniaxial metamaterials

    Non-magnetic nano-composites for optical and infrared negative refraction index media

    Full text link
    We develop an approach to use nanostructured plasmonic materials as a non-magnetic negative-refractive index system at optical and near-infrared frequencies. In contrast to conventional negative refraction materials, our design does not require periodicity and thus is highly tolerant to fabrication defects. Moreover, since the proposed materials are intrinsically non-magnetic, their performance is not limited to proximity of a resonance so that the resulting structure has relatively low loss. We develop the analytical description of the relevant electromagnetic phenomena and justify our analytic results via numerical solutions of Maxwell equations

    Meta-material photonic funnels for sub-diffraction light compression and propagation

    Full text link
    We present waveguides with photonic crystal cores, supporting energy propagation in subwavelength regions with a mode structure similar to that in telecom fibers. We design meta-materials for near-, mid-, and far-IR frequencies, and demonstrate efficient energy transfer to and from regions smaller than 1/25-th of the wavelength. Both positive- and negative-refractive index light transmissions are shown. Our approach, although demonstrated here in circular waveguides for some specific frequencies, is easily scalable from optical to IR to THz frequency ranges, and can be realized in a variety of waveguide geometries. Our design may be used for ultra high-density energy focusing, nm-resolution sensing, near-field microscopy, and high-speed all-optical computing.Comment: 4 pages, 3 figures, texify read

    Non-magnetic left-handed material

    Full text link
    We develop a new approach to build a material with negative refraction index. In contrast to conventional designs which make use of a resonant behavior to achieve a non-zero magnetic response, our material is intrinsically non-magnetic and relies on an anisotropic dielectric constant to provide a left-handed response in waveguide geometry. We demonstrate that the proposed material can support surface (polariton) waves, and show the connection between polaritons and the enhancement of evanescent fields, also referred to as super-lensing

    Active metamaterials: sign of refraction index and gain-assisted dispersion management

    Full text link
    We derive an approach to define the causal direction of the wavevector of modes in optical metamaterials, which in turn, determines signs of refractive index and impedance as a function of {\it real and imaginary} parts of dielectric permittivity and magnetic permeability. We use the developed technique to demonstrate that the interplay between resonant response of constituents of metamaterials can be used to achieve efficient dispersion management. Finally we demonstrate broadband dispersion-less index and impedance matching in active nanowire-based negative index materials. Our work opens new practical applications of negative index composites for broadband lensing, imaging, and pulse-routing

    Sub-diffraction light propagation in fibers with anisotropic dielectric cores

    Get PDF
    We present a detailed study of light propagation in waveguides with anisotropic metamaterial cores. We demonstrate that in contrast to conventional optical fibers, our structures support free-space-like propagating modes even when the waveguide radius is much smaller than the wavelength. We develop analytical formalism to describe mode structure and propagation in strongly anisotropic systems and study the effects related to waveguide boundaries and material composition

    Gain-assisted slow to superluminal group velocity manipulation in nano-waveguides

    Full text link
    We study the energy propagation in subwavelength waveguides and demonstrate that the mechanism of material gain, previously suggested for loss compensation, is also a powerful tool to manipulate dispersion and propagation characteristics of electromagnetic pulses at the nanoscale. We show theoretically that the group velocity in lossy nano-waveguides can be controlled from slow to superluminal values by the material gain and waveguide geometry and develop an analytical description of the relevant physics. We utilize the developed formalism to show that gain-assisted dispersion management can be used to control the transition between ``photonic-funnel'' and ``photonic-compressor'' regimes in tapered nano-waveguides. The phenomenon of strong modulation of group velocity in subwavelength structures can be realized in waveguides with different geometries, and is present for both volume and surface-modes.Comment: Some changes in the abstract and Fig.1. No results affecte
    • …
    corecore